首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   23篇
  国内免费   19篇
  2023年   5篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   12篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   22篇
  2013年   25篇
  2012年   18篇
  2011年   20篇
  2010年   17篇
  2009年   17篇
  2008年   27篇
  2007年   52篇
  2006年   37篇
  2005年   33篇
  2004年   31篇
  2003年   15篇
  2002年   13篇
  2001年   14篇
  2000年   15篇
  1999年   16篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   12篇
  1994年   14篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有530条查询结果,搜索用时 31 毫秒
1.
2.
Abstract In vitro antigenic reactivity of lipid A from Pseudomonas diminuta and Pseudomonas vesicularis with homologous and heterologous lipid A antibodies including monoclonal antibodies was studied by inhibition test of enzyme-linked immunosorbent assay (ELISA). The results suggest that both Pseudomonas lipid As have very similar epitopes, including species-specific and cross-reactive epitopes as compared with enterobacterial lipid A.  相似文献   
3.
体内致敏的树突状细胞诱导特异性抗肿瘤免疫的基础研究   总被引:1,自引:0,他引:1  
目的证实树突状细胞(dendritic cells,DC)可在体内通过吞噬凋亡肿瘤细胞获取抗原物质,探讨其在肿瘤免疫治疗中的意义.方法以615小鼠的前胃癌细胞株造模,在体外用rmGM-CSF和rmIL-4从荷瘤小鼠骨髓细胞分化、诱导未成熟树突状细胞.分为4组:小剂量化疗组、树突状细胞组、小剂量化疗+树突状细胞组和对照组,以BAX试剂盒检测肿瘤细胞凋亡.在瘤体内注射树突状细胞,观察给药侧瘤体及对侧瘤体体积,生存期,和特异性细胞毒性T淋巴细胞(CTLs)对肿瘤细胞的特异性杀伤作用.结果小剂量化疗能诱导肿瘤细胞凋亡.小剂量化疗后瘤内应用树突状细胞,给药侧瘤体及对侧瘤体体积明显缩小(P<0.05),小鼠的生存率提高,体内凋亡肿瘤细胞致敏的DC诱导的CTL对MFC有显著的杀伤作用,在效靶比为40:1、20:1、10:1和5:1时72 h的杀伤率分别为87.64%、70.32%、34.63%和13.87%.并能特异性杀伤小鼠前胃癌细胞MFC(P<0.01).结论体外诱导分化的未成熟DC,能于体内捕获小剂量化疗诱导的凋亡肿瘤细胞所携带的肿瘤抗原,诱导机体特异性抗肿瘤免疫反应.  相似文献   
4.

Background and Aims

The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs.

Methods

Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy.

Results

Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes.

Conclusions

The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.  相似文献   
5.
We have developed liposome-based synthetic constructs incorporating peptide epitope(s) (ErbB2 p63-67 CTL which is overexpressed in many tumors and/or HA 307-319 T-helper) and lipopeptide adjuvants (Pam3CysSerSer, Pam3CysAlaGly) in order to elicit an anti-tumor immune response. The epitopes, derivatized with a linker containing a cysteine residue, were conjugated on preformed vesicles (dia. ~ 100 nm) containing lipopeptides functionalized with thiol reactive groups (maleimide or bromoacetyl). The therapeutic efficacy of these constructs was evaluated on a Balb/c mice tumor model inoculated with syngenic murine renal carcinoma (Renca) cells expressing human ErbB2 (Her2/neu) receptor. A successful therapeutic vaccination was obtained which was antigen specific. Furthermore, it appeared that the nature of the polar head group of the lipopeptide adjuvant and also its type of functionalization influence the efficacy of the construct. In our study, the best results were obtained with formulations containing a Pam3CSS anchor in association with the CTL and Th epitopes. Considering these promising results studies are in progress with a new generation of liposomes that incorporate a neutral lipid – lacking adjuvant properties – that serves as anchor of the peptide epitopes and new adjuvants synthesized in our laboratory, which are screened for their antitumour activity in a therapeutic setting.  相似文献   
6.
The success of lipid membranes as cytotoxic T-cell (CTL) adjuvants requires targeted uptake by antigen-presenting cells (APCs) and delivery of the antigen cargo to the cytosol for processing. To target the phosphatidylserine (PS) receptor of APCs, we prepared antigen-loaded liposomes containing dipalmitoylphosphatidylserine and archaeal lipid liposomes (archaeosomes), containing an equivalent amount of archaetidylserine, and compared their ability to promote short and long-term CTL activity in animals. CTL responses were enhanced by the incorporation of PS into phosphatidylcholine/cholesterol liposomes and, to a lesser extent, into phosphatidylglycerol/cholesterol liposomes, that correlated to the amount of surface amino groups reactive with trinitrobenzoyl sulfonate. Archaeosomes contrasted to the liposome adjuvants by exhibiting higher amounts of surface amino groups and inducing superior shorter and, especially, longer-term CTL responses. The incorporation of dipalmitoyl lipids into archaeosomes induced instability and prevented long-term, but not short-term, CTL responses in mice. The importance of glycero-lipid cores (isopranoid versus dipalmitoyl) to the longevity of the CTL response achieved was shown further by incorporating dipalmitoyl phosphatidylethanolamine (DPPE) or equivalent amounts of synthetic archaetidylethanolamine (AE) into archaeosome adjuvants. Both DPPE and AE at equivalent (5 mol%) concentrations enhanced the rapidity of CTL responses in mice, indicating the importance of the head group in the short term. In the longer term, 5% of DPPE (but not 5% of AE) was detrimental. In addition to head-group effects critical to the potency of short-term CTL responses, the longer term CTL adjuvant properties of archaeosomes may be ascribed to stability imparted by the archaeal isopranoid core lipids.  相似文献   
7.
《MABS-AUSTIN》2013,5(1):129-137
Immunization of mice or rats with a "non-self" protein is a commonly used method to obtain monoclonal antibodies, and relies on the immune system's ability to recognize the immunogen as foreign. Immunization of an antigen with 100% identity to the endogenous protein, however, will not elicit a robust immune response. To develop antibodies to mouse proteins, we focused on the potential for breaking such immune tolerance by genetically fusing two independent T-cell epitope-containing sequences (from tetanus toxin (TT) and diphtheria toxin fragment A (DTA)) to a mouse protein, mouse ST2 (mST2). Wild-type CD1 mice were immunized with three mST2 tagged proteins (Fc, TT and DTA) and the specific serum response was determined. Only in mice immunized with the T-cell epitope-containing antigens were specific mST2 serum responses detected; hybridomas generated from these mice secreted highly sequence-diverse IgGs that were capable of binding mST2 and inhibiting the interaction of mST2 with its ligand, mouse interleukin (IL)-33 (mIL-33). Of the hundreds of antibodies profiled, we identified five potent antibodies that were able to inhibit IL-33 induced IL-6 release in a mast cell assay; notably one such antibody was sufficiently potent to suppress IL-5 release and eosinophilia infiltration in an Alternaria alternata challenge mouse model of asthma. This study demonstrated, for the first time, that T-cell epitope-containing tags have the ability to break tolerance in wild-type mice to 100% conserved proteins, and it provides a compelling argument for the broader use of this approach to generate antibodies against any mouse protein or conserved ortholog.  相似文献   
8.
BackgroundIn a previous work we showed the feasibility of an interferon gamma release assay (IGRA) for detecting latent infection by Histoplasma capsulatum. While in that proof-of-concept study we used crude fungal extracts as antigens, the newest IGRAs developed for other infections are based on molecularly defined antigens, mostly on mixtures of immunogenic peptides.AimsTo identify proteins in H. capsulatum that might serve as molecularly defined antigens for an IGRA test.MethodsWe surveyed the literature looking for known H. capsulatum-immunogenic proteins and assayed two of them as antigens in an IGRA test, in a study that involved 80 volunteers. Furthermore, we used several bioinformatics tools to identify specific H. capsulatum proteins and to analyze possible strategies for the design of H. capsulatum-specific immunogenic peptides.ResultsSeven H. capsulatum-immunogenic proteins were retrieved from the literature. IGRA tests using either the heat shock protein 60 or the M antigen showed high sensitivities but low specificities, most likely due to the high sequence similarity with the corresponding orthologs in other pathogenic microorganisms. We identified around 2000 H. capsulatum-specific proteins, most of which remain unannotated. Class II T-cell epitope predictions for a small number of these proteins showed a great variability among different alleles, prompting for a “brute force” approach for peptide design.ConclusionsThe H. capsulatum genome encodes a large number of distinctive proteins, which represent a valuable source of potential specific antigens for an IGRA test. Among them, the Cfp4 protein stands out as a very attractive candidate.  相似文献   
9.
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100?ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号